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Abstract

The paper is devoted to a theoretical analysis of a viscous liquid ®lm ¯owing down a vertical one-
dimensional periodic surface. The investigation is based on both Navier±Stokes and integral equations
and performed over a wide range of Reynolds number and surface geometry characteristics taking into
account viscosity, inertia and surface tension. Shape of the ®lm free surface and streamline function are
calculated. It is shown that there are two ranges of parameters where the ®lm ¯ow is controlled by
surface tension or inertia forces and where qualitatively di�erent behavior of the ¯ow main
characteristics is obtained. Stagnation zones are found and their transformation with increasing
Reynolds number is investigated. Comparison with experimental data is carried out. # 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Theoretical studies of ®lm ¯ows began with the classical work of Nusselt (1916) where he
obtained exact solutions for Navier±Stokes equations for a thin layer of viscous liquid free
falling down a smooth vertical wall:

U0�y� � 3nRe
H0

�
y

H0
ÿ y2

2H2
0

�
; H0 �

�
3n2Re
g

�1=3
:

Here U0( y) is a velocity pro®le in the ®lm in the direction of gravity vector g; n is the
kinematic viscosity; H0 is the liquid layer thickness at a given ¯ow rate; Re is the Reynolds
number.
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Further theoretical and experimental investigations have demonstrated that the Nusselt
solution is not achieved in practice and, as a rule, the ®lm surface is covered with waves. A
great number of works have been devoted to both linear and non-linear analysis of wave
formation and there are many reviews devoted to wavy ®lms (Fulford, 1964; Alekseenko et al.,
1992).
The problem of non-linear waves in the ®lm falling down a smooth surface has much in

common with that of a viscous layer ¯ow along a corrugated surface. In both cases the
governing equations are signi®cantly non-linear, the free surface is previously unknown, the
surface tension forces play a great role and there exists a spatial period. In our investigations
we will use some ideas of the numerical method developed by Trifonov and Tsvelodub (1991)
in their investigation of nonlinear steady-state traveling waves. At the present time, there are a
few theoretical papers and only one experimental work devoted to ®lm ¯ows along corrugated
surfaces. Using perturbation theory, Wang (1981) investigated the ¯ow along a sinusoidal
surface with a corrugation amplitude that was small compared to the Nusselt's thickness. Kang
and Chen (1995) generalized this approach on two-layers ¯owing down an inclined, slightly
wavy surface. Using boundary-integral computational analysis, Pozrikidis (1988) considered a
creeping ¯ow over an inclined periodic surface when the inertia forces were ignored. Shetty and
Cerro (1993) developed asymptotic analysis of ¯ow when the ®lm thickness is much smaller
than the amplitude of corrugation and it was demonstrated that the in¯uence of the inertia and
surface tension forces is small in this case. Zhao and Cerro (1992) obtained experimental data
on ¯ow over di�erent types of corrugated surface.

2. Governing equations

We consider a ¯ow of viscous incompressible liquid along a vertical corrugated surface. A
schematic of the ¯ow and the coordinate system are shown in Fig. 1. The equations of motion

Fig. 1. Flow scheme.
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and boundary conditions are as follows:
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Here, u is the velocity in the x-direction, v is the velocity in the y-direction, P is the pressure in
the liquid; P (V) is the atmospheric pressure; n and m are the kinematic and dynamic viscosities,
correspondingly; r is the liquid density; s is the surface tension coe�cient; f (x) is the wall
surface shape, h(x) is the ®lm free surface shape, H�x� � h�x� ÿ f �x� is the local ®lm thickness,
sik is the stress tension components, nk and ti are the components of normal and tangential
unit vectors, respectively.

Summing over repeated indexes is assumed in the boundary conditions and to complete the
de®nition of the equations we use the well-known formulas:

n �

�
ÿ dh

dx
; 1

�
������������������������
1�

�
dh

dx

�2
s ; ttt �

�
1;

dh

dx

�
������������������������
1�

�
dh

dx

�2
s ; u � �u; v�;

x � �x; y�; sik � ÿPdik � m
�
@ui
@xk
� @uk
@xi

�
:

After some transformation, the boundary conditions on the free surface can be presented as
follows:

P � P�V� � 2m
@v

@y

1�
�
dh

dx

�2

1ÿ
�
dh

dx

�2
ÿ s�

1�
�
dh

dx

�2�3=2 d2h

dx2
; y � h�x�;

@u

@y
� @v
@x
� 4

@v

@y

dh

dx

1

1ÿ
�
dh

dx

�2
� 0; y � h�x�;

Yu. Ya. Trifonov / International Journal of Multiphase Flow 24 (1998) 1139±1161 1141



From the continuity equation and kinematic condition on the free surface we have the integral

of motionZ h�x�

f�x�
u�x; y� dy � const � Q0 � nRe: �1�

Here, Q0 is a ¯ow rate in the liquid and Re is the Reynolds number.

The shape of the free surface is unknown beforehand. We use coordinates transformation:
x=x, Z=[yÿ f (x)]/H(x) and the ¯ow area becomes known: x � �0;L�, Z � �0; 1�. Using the

new variables x*=x/L, y*=y/H0, f *(x)= f (x)/A, u*=u/u0, n*= n/(eu0), H*(x)=H(x)/H0,
P*=P/ru 2

0, the non-dimensional equations are written as follows:
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Here A is the corrugation amplitude, u0=Q0/H0, e=H0/L, e1=H0/A, H0 is the Nusselt ®lm
thickness, We=(3Fi)1/3/Re 5/3, Fi=(s/r)3/gn 4, Z=( yÿ f (x)/e1)/H(x), Zx= ÿ(ZdH/dx+(1/
e1)df/dx)/H(x), Zy=1/H(x), ZxZ= ÿ(1/H) dH/dx, Zxx= ÿ(Zx/H) dH/dxÿ(Zd2H/dx 2+(1/e1)
d2f/dx 2)/H(x).
There are four independent parameters in the problem (e.g. Fi, (n 2/g)1/3/L, A/L and Re) and

a function describing the wall con®guration f(x). The problem consists of ®nding ®elds u(x, y),
n(x, y), P(x, y) and H(x) at the given parameters. Eq. (2)±(5) were computed numerically with
the use of the spectral method:

u�x; Z� � 1

2
U1�x� �

XM
m�2

Um�x�Tmÿ1�Z1�; Z1 � 2Zÿ 1;

Um�x� � U0
m �

XN=2ÿ1
n�ÿN=2�1

n6�0

Un
m exp�2pinx�; �Uÿnm �* � Un

m; m � 1; . . . ;M:

Here Tm(Z1) are Chebyshev polynomials, and the `star' superscript designates complex
conjugation.
At M(Nÿ1) known values of harmonics Un

m, the ®lm thickness H(x) is unambiguously
regenerated from (5), n(x, Z) from (4), and P(x, Z) from (3) and (7). The numerical algorithm
starts with the speci®cation of the initial approximation for harmonics Un

m which are then
improved by Newton's method from (2) transformed into (n, m)-space. The Jacobian matrix
was calculated using the ®rst order di�erential scheme, and nonlinear terms in the equations
were calculated in (x, Z)-space.
Let us mention that when applying the spectral method, a common problem arises: with an

account for boundary conditions (6), (8), we have (M+2)(Nÿ1) nonlinear algebraic equations
for the de®nition of M(Nÿ1) unknown values, i.e. the system is overde®ned. This problem is
related to the fact that the basic functions in spectral expansion do not satisfy boundary
conditions. There are several ways to overcome this. In the current paper we discard 2(Nÿ1)
equations corresponding to the last two Chebyshev coe�cients in the expansion of the right
side of (2). While adjusting the procedure we tried other methods of reducing the number of
equations and the results do not di�er signi®cantly for a good enough accuracy of approx-
imation of the function u(x, Z) (vUN/2ÿ1

m v/supvUn
mv<10ÿ3 at any m, and vUn

Mv/supvUn
mv<10ÿ3

at any n). During the calculations, the indicated conditions of approximation were provided by
the corresponding increase of numbers N and M from 16 to 128 and from 5 to 15, respectively,
depending on the Reynolds number, surface geometry and physical properties of the liquid.

3. Integral model main equations

A number of recent publications have demonstrated (see Trifonov and Tsvelodub, 1991 and
review by Alekseenko et al., 1992) that the integral approach describes well the wavy ®lm
hydrodynamics in the case of a ¯ow down a smooth wall. The integral approach requires far
fewer computer resources than do calculations based on the Navier±Stokes equations.
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In the case of the wavy hydrodynamics, only the long-wave disturbances were considered by

use of the integral approach. Let us restrict ourselves in the case of ¯owing over a corrugated
surface to studying the ®lms which are thin compared to the corrugation period [e<<1, see (2)±
(8)]. For the range of Reynolds numbers under consideration e<<Re<1/e, after neglecting
terms smaller than O(e) the equations simpli®ed substantially. In dimensional form it is as
follows:
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Deriving (9) from (2)±(8) we retain the term containing the capillary pressure in the boundary
condition. This is possible if the ®lm number Fi 0Re 5/e 6, which is generally true for most
experiments.

For further simpli®cation of the problem we will use the self-similarity assumption of the

velocity pro®le:

u�x; y� � 3nRe
H�x�

�
yÿ f�x�
H�x� ÿ

�yÿ f�x��2
2H2

�
: �10�

The velocity pro®le given by (10) is the simplest expression that satis®es the boundary
condition on the wall and free surface. For the ¯at plate Eq. (10) is the exact solution of the
Navier±Stokes equation. We think that, for the case of long corrugations e<<1, this assumption

is reasonable enough. The correctness of (10) will be evaluated by comparing the solutions of
the simpli®ed system with the experimental results and with the solutions of Navier±Stokes
equations.

Using (10) and integrating (9) over the y-direction from f(x) to h(x), we obtain a single
di�erential equation as follows:
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Here the units of the dimensionless values are the same as those of (2)±(8).

There are three independent parameters (eRe, e 2We, e1) in (11) that di�er from (2)±(8) where
we have four parameters. Eq. (11) was computed numerically by use of the Fourier expansion:

H�x� �
XN=2ÿ1

n�ÿN=2�1
Hn exp�2pinx�; �Hÿn�* � Hn:
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After substitution in (11), we have a system of nonlinear algebraic equations which were
calculated numerically by Newton's method. Nonlinear terms were calculated in x-space and
their Fourier-harmonics were determined later.
During the calculations the number of harmonics N was changed from 16 to 256 in order to

provide accuracy of approximation vHN/2v/supvHnv<10ÿ3.

4. Results of the numerical calculations and comparison with experiments

Some results of calculations on the basis of Navier±Stokes Eqs. (2)±(8) and the integral
model (11) are presented in Figs. 2 and 3, respectively. Fig. 4 demonstrates the experimental
data obtained by Zhao and Cerro (1992). For all the ®gures, the ®lm ¯ow of highly viscous
liquids (silicon oil and glycerol) was investigated and shapes of the free surface (lines 1 S±19 S)
are shown with the Reynolds number decreasing (see Table 1 for the values of Re). Amplitude
and period of corrugation are equal to A= fmax(x)ÿ fmin(x)=3.175 mm, L=6.35 mm,
respectively, for both calculation and experiment. The dimensionless form of the solid surface

Fig. 2. Free surface pro®les of the silicon oil ®lm ¯owing over the corrugated surface with A=3.175 mm and
L=6.35 mm. Calculations based on the Navier±Stokes equations and ¯ow rates corresponding to lines 1 S±19 S are
given in Table 1.
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in the calculation is given as f (x)=0.5[1ÿcos(2px)]. We use the same values of physical
properties as were listed by Zhao and Cerro (1992) (see Table 2).
It was di�cult in the calculations to use exactly the same solid surface shape as in the

experiments due to the large number of harmonics which were needed to approximate the
corrugations. Taking into account this di�erence, it is possible to say that there is good
agreement between all the corresponding plots in Figs. 2±4. The same conclusion follows from
the comparison presented in Fig. 5. Line 1 and point 1 correspond to the dependence of the
nondimensional ®lm thickness maximum b=(HmaxÿHmin)/2H0 on Nusselt's thickness and
line 2 and point 2 to that of the nondimensional ®lm surface maximum b=(hmaxÿhmin)/2H0.
Lines and points with lower index `si' correspond to the calculations and experimental data for
silicon oil, those with index `g1A' for glycerol A and with index `g1B' for glycerol B (see
Table 2 for details).
In Fig. 6 the contour plots of the nondimensional streamline function are presented at three

di�erent Reynolds numbers. Calculations were carried out on the base of Navier±Stokes
equations. Shape of the zero level contour line is identical to the solid wall surface and that of
the unit level to the ®lm free surface, as follows from (1). There are no stagnation zones for

Fig. 3. Free surface pro®les of the silicon oil ®lm ¯owing over the corrugated surface with A=3.175 mm and

L=6.35 mm. Calculations based on the integral model and ¯ow rates corresponding to lines 1 S±19 S are given in
Table 1.
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this type of corrugation and for the liquid investigated. It is in agreement with Zhao and Cerro
(1992) experiments.
In Fig. 7±12 the results of the hydrodynamics calculations of the ®lm ¯owing down the

corrugated surface with A=0.175 mm, L=1.57 mm and the same nondimensional shape
f (x)=0.5[1ÿcos(2px)] are presented. In accordance with Zhao and Cerro (1992) this

Fig. 4. Free surface pro®les of the silicon oil ®lm ¯owing over the corrugated surface with A=3.175 mm and

L=6.35 mm. Experimental data obtained by Zhao and Cerro (1992). Flow rates corresponding to lines 1 S±19 S
are given in Table 1.

Yu. Ya. Trifonov / International Journal of Multiphase Flow 24 (1998) 1139±1161 1147



corrugation is the P-surface. There is a special feature of the P-surface that the ratio of the
corrugation amplitude to the period is small A/L<<1.
In Fig. 7, the contour lines of the streamline function are presented for the ¯ow of a highly

viscous liquid (silicon oil) over the P-surface. The shape of the ®lm free surface is identical to
the unit level contour line and one is very close to ¯at. There are no stagnation zones. Results
of the calculations are in agreement with those of the experiments for this type of surface
obtained by Zhao and Cerro (1992).
In Figs. 8 and 13±16, the results of investigation of the small viscosity and surface tension

liquid ®lm ¯ow are presented. As an example, liquid nitrogen properties are used at the
saturation line and at one atmosphere pressure (see Table 2 for details).
In Figs. 8 and 9 the comparison between the calculations based on the Navier±Stokes

Eqs. (2)±(8) and integral model (11) are shown. Shapes of the free surface ®lm at three

Table 1
Reynolds numbers for the calculations and experiments presented in Figs. 2±4

No Liquid Reynolds number

1 S Silicone oil 0.3870
2 S Silicone oil 0.1657
3 S Silicone oil 0.1284
4 S Silicone oil 0.0890

5 S Silicone oil 0.0265
6 S Silicone oil 0.0221
7 S Silicone oil 0.0199

8 S Silicone oil 0.0193
9 S Silicone oil 0.0060
10 S Silicone oil 0.0043

11 S Glycerol A 0.0139
12 S Glycerol A 0.0093
13 S Glycerol A 0.0069

14 S Glycerol A 0.0047
15 S Glycerol A 0.0038
16 S Glycerol B 0.0019
17 S Glycerol B 0.0015

18 S Glycerol B 0.0011
19 S Glycerol B 0.0010

Table 2

Physical properties of the liquids used for the calculations and experiments in Figs. 2±5

Fluid Silicone oil Glycerin A Glycerin B Liquid nitrogen

Density (kg/m3) 969 1261 1265 808
Viscosity (m2/s) 9.12 10ÿ5 3.6 10ÿ4 7.42 10ÿ4 1.82 10ÿ7

Surface tension (N/m) 0.0214 0.0625 0.06 0.00887

Film number Fi 15.872 0.739 0.0359 1.231 1011

Capillary const. (s/rg)1/2 (mm) 1.5 2.248 2.199 1.06
Viscous. const. (3n 2/g)1/3 (mm) 1.365 3.41 5.522 0.0216
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di�erent values of Reynolds number are presented in Fig. 8. Dependencies of the averaged
nondimensional ®lm thickness (hHi/H0= f10H(x) dx) and those of the ratio (hmaxÿhmin)/A on
Reynolds number are shown in Fig. 9.
There are several solutions of the integral model at Re>125, for example; we have ®ve

di�erent solutions at the same Reynolds number for Re>225. For the integral model, the
solutions from the range of large Reynolds numbers do not transform continuously into the
solutions from the range of small Reynolds numbers with the parameter Re decreasing and we
have two branches of solutions (see line 2 in Fig. 9).
Calculations based on the Navier±Stokes equations demonstrate that there is a single

solution at one Reynolds number for all the range of Re investigated (see line 1 in Fig. 9).
Two qualitatively dissimilar areas in ¯ow characteristic behavior can be distinguished within

the studied range of Reynolds numbers. In the area of moderate Reynolds numbers, the ¯ow is
controlled signi®cantly by the surface tension forces and there is good correspondence here
between the Navier±Stokes solutions and the integral model (see pro®les at Re=5 in Fig. 8
and range Re<30 in Fig. 9). With the Reynolds number increasing, the role of the inertia
forces increases and they are dominant for the `large' values of Re. There is essential
disagreement between the Navier±Stokes and integral calculations in the range of `large'
Reynolds numbers in spite of the long-wave corrugation of the wall surface A/L<<1.
Calculations according to the Navier±Stokes equations show that the free surface becomes ¯at
with the Reynolds number increasing (see the ®lm free surface pro®le at Re=400 in the lower
part of Fig. 8) which di�ers from the integral model calculations (pro®le at Re=400 in the
upper part of Fig. 8). The same conclusion follows from the results presented in Fig. 9. There

Fig. 5. Film ¯ow of highly viscous liquid over the corrugated surface with A=3.175 mm and L=6.35 mm.
Comparison of the calculations based on the Navier±Stokes and integral equations and Zhao and Cerro (1992)
experiments.l Line 1 is b=(HmaxÿHmin)2H0, line 2 is b=(hmaxÿhmin)/2H0. Low index `si' corresponds to the

silicon oil, `g1A' to glycerol A, `g1B' to glycerol B (see Table 2).
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Fig. 6. Contour lines of streamline function. Film ¯ow of silicon oil over the corrugated surface with A=3.175 mm
and L=6.35 mm. Calculations based on the Bavier±Stokes equations.
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is the tendency, (hmaxÿhmin)/A 4 0 with the Re increasing in this ®gure for the Navier±Stokes
calculations and (hmaxÿhmin)/A 4 const, const$0 for the integral model.
Averaged ®lm thickness is always greater than the Nusselt thickness and their ratio increases

rapidly with the Reynolds number decreasing in the range where the capillary forces are
dominant. At small Reynolds numbers, areas of `thick' ®lm form in the surface cavities and
areas of `thin' ®lm form on the tops.
Contour lines of streamline functions and their deformation with the Reynolds number

increasing are presented in Fig. 10. The results are based on the Navier±Stokes equations and

Fig. 7. Contour lines of streamline function. Film ¯ow of silicon oil over the corrugated surface with A=0.175 mm

and L=1.57 mm. Calculations based on the Navier±Stokes equations.

Fig. 8. Film ¯ow of liquid with small viscosity over the corrugated sheet with A=0.175 mm and L=1.57 mm.

Pro®les of the free surface at various Reynolds numbers calculated according to the Navier±Stokes and integral
equations.
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allow us to explain why the integral approach gives wrong conclusion for the `large' value of
Re (Re>30). The main e�ect, which is not taken into account by the integral approach, is the
presence of the stagnation zones where the liquid circulates without ¯owing from one cavity to
another (the stagnation or recirculating zone is bounded by zero contour lines in Fig. 10).
There are at least two ranges of the Reynolds number where we have no stagnation zones as

follows from the results in Fig. 10. Figs. 11 and 12 show the range of Re where the stagnation
zone disappears with the smaller step of the Reynolds number. It is followed from Figs. 10±12
that the stagnation zone is born on the negative slope (df/dx<0) of the corrugations and
disappears on the positive side of the corrugation (df/dx>0).
It is interesting to note that, for the Reynolds number close to the value we obtained where

the stagnation zone disappears, the resonance phenomenon between a wavy wall and the free
surface was recently predicted by Bontozoglou and Papapolymerou (1997).

Fig. 9. Film ¯ow of liquid with small viscosity over the corrugated sheet with A=0.175 mm and L=1.57 mm.
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Fig. 10. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the corrugated surface

with A=0.175 mm and L=1.57 mm. Calculations based on the Navier±Stokes equations.
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Fig. 11. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the corrugated surface

with A=0.175 mm and L=1.57 mm. Calculations based on the Navier±Stokes equations.
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Fig. 12. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the corrugated surface
with A=0.175 mm and L=1.57 mm. Calculations based on the Navier±Stokes equations.

Fig. 13. Film ¯ow of liquid with small viscosity over the surface with a more complex shape of corrugations than
the sinusoidal pro®le. Amplitude and period of corrugations are A=0.175 mm, L=1.57 mm.
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Fig. 14. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the surface with a more
complex shape of corrugations than the sinusoidal pro®le. Amplitude and period of corrugations are A=0.175 mm,

L=1.57 mm. Calculations based on the Navier±Stokes equations.
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Fig. 15. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the surface with a more
complex shape of corrugations than the sinusoidal pro®le. Amplitude and period of corrugations are A=0.175 mm,

L=1.57 mm. Calculations based on the Navier±Stokes equations.

Yu. Ya. Trifonov / International Journal of Multiphase Flow 24 (1998) 1139±1161 1157



Fig. 16. Contour lines of streamline function. Film ¯ow of liquid with small viscosity over the corrugated surface

with A=0.175 mm and L=1.57 mm. Calculations based on the simpli®ed Navier±Stokes equations.
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Results of the investigation of the wall corrugation shape in¯uence on ®lm ¯ow
hydrodynamics and on comparison between the integral approach and Navier±Stokes
equations are given in Figs. 13±15. The dimensionless shape of the corrugations is a `cut'
sinusoidal pro®le and harmonics of the Fourier expansion are as follows:

f0 � 1
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; Re� fn� � 1

4
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2

�
� s

�
n� 1

2

�� �
; Im� fn� � 0; n � 1; . . . ;

N

2
ÿ 1;

s�x� � sin px
px

:

Amplitude and period of the corrugations are 0.175 mm and 1.57 mm, respectively. Results
presented in Figs. 13±15 are qualitatively the same as have been discussed for the ¯ow over a
sinusoidal pro®le. Let us emphasize that there are also two ranges of Reynolds number where
we have no stagnation zones.

5. Simpli®ed system of the governing equations

One of the most interesting results of the paper is that, starting from some value of
Reynolds number, the essential disagreement between the predictions of the integral model and
Navier±Stokes equations is obtained in spite of the small ratio A/L<<1. There is the important
question of how to correctly use the small value of the parameter A/L and to simplify Navier±
Stokes equations without loss of the stagnation zone prediction. To investigate this problem,
we successively reduce the system of Eqs. (2)±(8) discarding terms O(e) and comparing the
results of the calculations with those of the Navier±Stokes equations over a wide range of
Reynolds numbers. As a result, it is demonstrated that the simplest system of equations is as
follows:
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and in nondimensional form
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In Fig. 16, the contour lines of the streamline functions and their transformation with the
Reynolds number increasing are shown. Calculations are based on the reduced system of (12)±
(16) and the comparison with the results presented in Fig. 10 demonstrates good agreement.
Further simpli®cation of (12)±(16) leads to the loss of the stagnation zone description

and gives us the essential disagreement with the calculations based on the Navier±Stokes
equations.

6. Conclusion

Theoretical analysis of a viscous liquid ®lm ¯owing down a vertical one-dimensional periodic
surface is carried out. The investigation is based on both Navier±Stokes and integral equations
and is performed over a wide range of Reynolds number and surface geometry characteristics,
taking into account viscosity, inertia and surface tension. Results presented in the paper allow
the following conclusions to be drawn:

1. Two qualitatively dissimilar areas in ¯ow characteristic behavior can be distinguished within
the studied range of Reynolds numbers. In the area of moderate Reynolds numbers, the
¯ow is controlled signi®cantly by the forces of surface tension, and in the area of large Re
by inertia forces.

2. The comparison between the results obtained on the basis of the integral model and
Navier±Stokes equations demonstrates that the integral approach is correct in the area
where the ¯ow is de®ned mainly by surface tension forces.

3. The calculations show that, while increasing the Reynolds number, the free surface
`straightens' and becomes parallel to the x-axis. At small Reynolds numbers, areas of `thick'
®lm form in the surface cavities and areas of `thin' ®lm form on the tops. Average ®lm
thickness is always greater than Nusselt thickness and, as Re decreases, this di�erence
increases due to the presence of `thick' ®lm in the cavities.

4. For the ¯ow of liquid with small viscosity, two ranges of Re are found where the stagnation
zones exist. Flow of the highly viscous liquid over the same corrugations is without the
recirculation zones.
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